
CS 329A, Handout #8Nayak

Types of local consistency

• (i, j)-consistency

– any solution to a subproblem of i variables can be extended 
to a solution including any j additional variables

• k-consistency

– any solution to a subproblem of k–1 variables can be 
extended to a solution including an additional variable

– equivalent to (k, 1)-consistency

– arc consistency is 2-consistency 

– path consistency is 3-consistency

• (1, k)-consistency is k inverse consistency
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Time and space complexity

• Both k–consistency and k inverse consistency take time 
exponential in k

• In general, k-consistency requires creating and storing 
constraints involving k–1 variables

– can require O(dk–1) space

• However, k inverse consistency only filters out values for 
variables

– worst case space requirement is linear

– …and can even decrease the space requirement
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Neighborhood inverse consistency

• Let the neighborhood of a variable v consist of the variables 
with which v shares a constraint

• Neighborhood inverse consistency enforces for each variable v 
k inverse consistency for v  and its  k–1 neighbors 
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Neighborhood inverse consistency
function NIC

Insert each variable v  onto agenda A

while A ≠ {} do

v = pop(A) and deleted = false

for each a  in dom(v)  do
if there is no solution to Nbd(v) with v assigned a  then

dom(v) = dom(v) \ {a} and  deleted = true

if dom(v) = {} then  return  “domain wipeout”

endif
if deleted then  

for each u in Nbd(v) do A = A ∪ {u}

endwhile

return “consistent”

end NIC



CS 329A, Handout #8Nayak

Constraint graphs

• The primal-constraint graph of a constraint network has

– a node for each variable

– an undirected edge between two nodes if the corresponding 
variables occur in the same constraint

• The dual-constraint graph of a constraint network has

– a node for ecah constraint

– an undirected labeled edge between two nodes that share a 
common variable

– edges are labeled by the shared variables
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Tree networks

• Constraint networks whose primal graph is a tree

• Can be solved in time linear in the number of variables 
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Solving a tree network

procedure tree-algorithm

Generate a rooted tree ordering, d = x1, x2, …, xn

for i = n  downto 1  do

revise(xp(i), xi)

if  dom(xp(i)) = {} then  “no solution exists”

endfor
Use backtracking to instantiate variables along d

end tree-algorithm



CS 329A, Handout #8Nayak

Width

• Given a variable ordering d = x1, x2, …, xn

– the width of a node xi is the number of edges that connect xi 
to nodes earlier in the ordering

• The width of an ordering is the maximum width of all nodes

• The width of a graph is the minimum width of all orderings
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Directional consistency

• Given an ordering d, directional i-consistency along d requires 
that any consistent instantiation of i–1 variables can be 
consistently extended by any variable that succeeds all of them 
in the ordering d

– strong directional i consistency also requires directional j 
consistency for all j < i

• Theorem: An ordered constraint graph is backtrack free if the 
level of directional strong consistency along the order is 
greater than the width of the ordering



CS 329A, Handout #8Nayak

Enforcing directional consistency
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Adaptive consistency

procedure Adaptive-consistency

for  i = n downto 1 do
Connect all elements in parents(xi)

Perform consistency(xi, parents(xi))

endfor

end Adaptive-consistency

• Topology of induced graph can be found a priori

• Let w*(d) be the width of induced graph
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Nonseparable components

• Separation nodes (or articulation nodes) separate the graph 
into nonseparable components (or biconnected components)
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Cycle cutset scheme

• Instantiating a variable cuts its own cycles

• When a group of instantiated variables constitutes a cycle 
cutset, the remaining network can be solved using the tree 
algorithm

x1

x5

x4

x3

x2

x1

x5

x4

x3

x2

x2 x2


